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ABSTRACT 

Here we study numerically the structure of directed 
state transition graphs for several types of finite-state 
devices representing morphology of 16 languages. In all 
numerical experiments we have found that the 
distribution of incoming and outcoming links is highly 
skewed and is modeled well by the power law, not by 
the Poisson distribution typical for classical random 
graphs. Studied for three languages, distribution of 
nodes according to the traffic they experience during 
corpora processing obeys the power law as well. Traffic 
and out-degree are the parameters, which affect 
performance of finite-state devices. We discuss how 
specific properties of power law, like distribution of 
these parameters (coexistence of small number of 
"hubs" with large number of "small events"), can be 
exploited for efficient computer implementation of 
finite-state devices used in morphology. 
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1. INTRODUCTION 

Finite-state devices, including finite-state automata and 
transducers, are widely used in natural language 
processing to produce morphological information. 
Constructed as applications of formal finite-state 
techniques, they can be considered as networks where 
nodes represent states and arcs represent the transitions. 

In computational linguistics semantic and 

co-occurrence networks were already studied. In these 
networks nodes correspond to words. In semantic 
networks the links show semantic relations between 
words. In co-occurrence networks links represent the 
fact that words occur beside each other in a corpus. In 
[8] the average out-degree of random non-deterministic 
automata is shown to be a good predictor for the 
expected number of states in the determinized 
automaton, the same technique is used in [13].  

In the Introduction we present the basics of 
finite-state processing in morphological applications. In 
Section 2 – Random Networks – we briefly outline 
methods and results of this relatively new theory to 
identify which of them are related to the study of 
finite-state devices. In Section 3 we describe the 
morphological data used in our experiments, and in 
Section 4 - our cross-linguistic experimental study of 
the degree distribution, which we have found well 
approximated by the power-law. In Section 5 we 
describe applications to per-node optimization of 
finite-state processing. 
1.1 Finite-state devices used in morphology 
In our experiments we analyzed two major types of 
finite-state devices, used in natural language processing 
for word verification and producing morphological 
information.  

Finite-state automata. The input list of surface forms 
is compiled into a letter tree, which is then minimized to 
reuse common postfixes. Each word can be loaded with 
additional information (its part-of-speech categories, 
etc.), which can be attached to the leaves (the terminals) 



of the letter tree. In this case two postfixes can be 
merged only if they lead to exactly the same 
information. Finite-state automata (FSAs) constructed 
this way, are acyclic and deterministic. 

In our experiments we also analyzed IBM lexical 
transducers that implement two-level morphology rules. 
Some of them have cycles and are non-deterministic. 
1.2 Transition networks of finite-state devices 
All finite-state devices considered here are finite-state 
transition networks and can be viewed as the compact 
description of morphology in the form of algorithm. If 
information about conditions and/or intentional 
descriptions of the transitions is ignored, we are left 
with a graph, which in case of deterministic devices 
exactly represents control flow of the algorithm. These 
transition networks range in size from 31,219 to 
429,577 nodes. 

2. RANDOM NETWORKS 

2.1 Graph theory and random graphs  
In the theory of random graphs, the simplest and the 
most intensively studied one-vertex characteristic is 
degree. The in-degree, ki, is the number of incoming 
arcs of a vertex in an directed graph. The out-degree, ko, 
is the number of its outgoing arcs. Total distributions of 
vertex degrees of an entire network, Pi(ki) – the 
in-degree distribution, and Po(ko) - the out-degree 
distribution - are basic statistical characteristics of 
random networks. 

Random graphs were first studied in the late 1950s by 
Erdös and Rényi. In general terms, a random graph is a 
graph in which properties such as the number of nodes, 
edges, and connections between them are determined in 
a random way. In Erdös and Rényi simplest classical 
model the graph has a fixed number of vertices, which 
are connected, at random, by edges. The degree in 
classical random graphs follows binomial distribution 
which can be approximated by a Poisson distribution  
P(k) = e-λ  λk ⁄ k! . 
2.2 Random massive networks  
During the last decade random networks became an 
interdisciplinary area of research with a strong influence 
from statistical physics. Empirical and theoretical 

studies were applied to numerous real world networks 
in communications, biology, social sciences and 
economics. Standard indicators or measurements that 
characterize the structure of a graph are: 
• The statistical distribution of links (characterizing 

homogeneity and scaling properties of the graph); 
• The mean or maximum intervertex distance, giving 

an idea of its size, or diameter; 
• The clustering index (a measure of independence of 

neighboring links). 
The following less frequently used characteristic is 
important for finite-state transition networks (as we 
consider them as control flow networks): 
• the traffic (the number of trajectories passing 

through each vertex or arc, and so identifying the 
most active hubs). 

The following phenomena were found in many real 
networks (see [2]):  
• Small path length (small-word concept); 
• Large degree of clustering; 
• Power-law tail degree distribution (scale-free 

concept). 
2.3 Applications to computational linguistics 
Methods of random networks theory were already 
successfully applied to the study of lexical-semantic 
resources like WordNet - a database of word meanings 
with basic semantic relations between them, such as 
synonymy, hyponymy etc. See, for example, ([9], [10] 
and [6]). The major focus was on the small-world 
concept. Degree distribution was found to follow the 
power-law.  

3. EXPERIMENTAL DATA 

3.1 Morphological data 
Finite-state transition networks of IBM morphological 
dictionaries were used for experiments. For the purpose 
of this paper, it is necessarily to describe the types of 
glosses in the dictionaries, because this directly affects 
topology of the network through minimization stage 
which eliminates some nodes.  
3.2 Description of the dictionaries 
Germanic languages: English, German, Dutch, Swedish, 
Norwegian, Danish. Dictionaries contain word 
formation elements used for compounding. 

Romance languages: French, Italian, Spanish, 
Portuguese. Clitics are present in the dictionaries. 



Ideographic languages: Chinese traditional and 
simplified. Chinese FSAs are compiled from the lists of 
words provided with glosses: part-of-speech and 
"frequencies". The frequencies are used for statistical 
word segmentation because Chinese language has no 
orthographic word boundaries. Implementation is 
complicated by the fact that Chinese is an ideographic 
language with a repertoire of thousands of characters. In 
[7] binary search was suggested for implementation of 
finite-state devices for ideographic languages. We use 
the polymorphic node structure suggested in [12] . 

Lexical transducers. Languages: Finnish, Turkish, 
Czech, Polish, Thai. Thai dictionary contains words and 
collocations and is used for word segmentation. Other 
languages provide inflectional and derivational 
morphology based on two-level morphology rules. 

4. EXPERIMENTAL STUDY OF 
STATISTICS 

4.1 Degree distribution 
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Fig. 1. The log-log (base 10) plot of power-law 
approximation of the out-degree distribution for 
English with data binned into exponentially 
expanding bins so that they will appear evenly 
spaced on a log scale (the method is discussed in [1] 
and [4]). 

 
We studied separately distribution of in-, out- and 

full-degree. In all our experiments, performed for two 
types of deterministic finite-state devices representing 
morphology of 16 languages, we have found that degree 
distribution in all state transition graphs that were 
considered is well approximated by the power-law. The 
random variable  x  is said to be distributed according 
to the power-law with the exponent  γ  if its 
probability density function satisfies P(x) ~ x -γ. 
 

Language 
 

FS device In-Degree 
exponent 

Out-Degree 
exponent 

Chinese simplified FSA 2.47 2.53 
Chinese traditional FSA 2.55 2.56 
Czech FST 2.44 2.69 
Danish FSA 2.62 3.19 
Dutch FSA 2.71 3.35 
English FSA 2.52 3.18 
Finnish FST 2.37 2.35 
French FSA 2.50 3.38 
German FSA 2.67 3.32 
Italian FSA 2.43 3.14 
Norwegian FSA 2.56 3.17 
Polish FST 2.56 2.96 
Portuguese FSA 2.42 3.20 
Spanish FSA 2.45 3.20 
Swedish FSA 2.58 3.09 
Thai FST 2.82 2.95 

Table 1. The exponents of power-law approximation 
of the distribution of in- and out-degree found for 
our experimental data. Quantification was done with 
the data binned into exponentially expanding bins 
(the method is discussed in [1] and [4]). 

 
The usual way to fit power-law distribution is to 
perform a linear regression on a log-log plot of the 
cumulative distribution function.  
4.2 Traffic 
Nodes of a finite-state device experience traffic when 
the device is used to process corpora. The traffic is 
defined as a the number of visits to a node while 
processing a corpus. Traffic was measured for English, 
French and German dictionaries based on several 



corpora with the sizes varying from several hundreds of 
kilobates to a dozen of megabytes. In all cases traffic 
demonstrated highly skewed Zipf-like distribution. 
Fig.2 shows traffic distribution for English dictionary.  
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Fig. 2. The log-log (natural log) plot of cumulative 
distribution function for nodes traffic in English 
dictionary. 

 
In our experiments top 1% of the most visited nodes 
covered on average about 90% of the whole traffic. In 
all our experiments for three languages top 5% of the 
nodes covered more than 91.1% of the traffic. 
4.3 Fitness of the degree-distribution to power-law 
Our experiments demonstrate, that the in-degree and 
full-degree distribution of finite-state transition 
networks are well approximated by the power-law. 
In-degree in all our experiments cleanly fit a power-law 
over about three decades. Empirical distribution is 
considered to exhibit a regime of power-law decay if 
log-log plot fits visually to a strait line at least for two 
decades preferably on both axes (see e.g. [4]). 

Deterministic finite-state transition nets, considered 
in this paper, have finite node’s capacity of the 
out-flowing links, because these links are uniquely 
labeled by characters from the dictionary alphabet. For 
example, English dictionary contain 96 unique 
characters (including case variations). However, 
out-degree degree distribution also demonstrate limited 
power-law regime, which is quite different from the 
Poisson distribution typical for classical random graphs. 

5. APPLICATIONS OF STATISTICS 
FOR EFFICIENT IMPLEMENTATION 

5.1 Consequences of power-law behavior 
Distributions with peaks characterizing random 
networks display a strong tendency to cluster around 
particular values. Thus it may be useful to characterize 
the distribution by several quantities related to its 
moments, including the mean (or alternatively – by 
median and mode). By contrast, in systems exhibiting 
power law distribution, the mean and median are 
typically not very useful.  
 
 

 
Fig. 3. Consequences of power-law behavior of the 
out-degree distribution vs. Poisson distribution. In 
Poisson distribution most of the nodes have number 
of links close the average. In power-law distribution 
small number of nodes have significant number of 
links, coexisting with the many nodes which have 
only a few links. 

 
Consider applications of a power-law behavior of a 
distribution of a parameter related to per-node 
optimization of finite-state processing, such as 
out-degree distribution or traffic. If this distribution is 
Poissonean (Bell curve), than most nodes are similar, 
and optimization based on this parameter is likely to be  
inefficient. If the distribution is more like a power-law 
distribution, than 
• “rare events” or hubs emerge 
• numerous “small" events coexist with a few large 

ones (spanning for several decades of the parameter 
values) 

Fig. 3 illustrates this, the parameter being the out-degree 
distribution. 



5.2 Applications to the polymorphic node format 
Program structures, used to navigate through a 
finite-state net, have different performance and different 
memory requirements. For example, deterministic 
finite-state devices are most efficiently implemented 
with transition tables that enable rapid selection of links 
between states, where these links are stored in an array 
indexed by characters from the input language. 
However, efficiency comes at the expense of 
considerable memory overheads. Thus, efficiency of 
application of transition tables depends primarily on the 
distribution of nodes with respect to the traffic they 
experience during corpora processing. Transition tables 
can be efficiently used if this distribution is a 
power-law-like fat-tailed distribution, so that a small 
number of nodes are responsible for a significant 
portion of traffic. 

The paper [12] provided classification of nodes 
according to their traffic-related role in an FSA and a 
formal procedure for assigning a polymorphic format to 
each node based on this role and out-degree of the node. 

However, the optimization model [12] was based on 
heuristic assumptions about the structure of dictionaries. 
Experimental results of this paper support most of these 
assumptions; in particularly, in our experiments top 1% 
of the nodes with the biggest traffic (“hubs”) are 
responsible for about 90% of the whole traffic. This 
explains high efficiency of the per-node optimization 
reported in [12]. 

Another specific property of a power-law-like 
distribution is a large number of “small events”, which 
for out-degree is related to emergence of filament-like 
“letter chains”, where the out-degree of several 
consecutive nodes is one. A dedicated node format can 
be assigned to the head node of each letter chain, with 
the responsibility of this node/format to perform the 
necessary test to allow direct transition to the end of the 
chain. This gives an opportunity to eliminate without 
any loss some nodes, which is known in the 
construction of word graphs as compaction or path 
compression method. The known efficiency of the 
methods hinges upon power-law-like distribution of 
out-degree. 

5.3 Applications to the storage of sparse transition 
tables 
Transition tables are memory expensive, which suggests 
that methods for storing sparse tables, like those 
described in [11], might be useful. One such method can 
be described as follows. Instead of occupying different 
memory segments, transition tables, assigned for 
different nodes are all mapped into one large array, so 
that transitions associated with different nodes do not 
overlap. Each node is assigned a displacement, which 
determines position of the transition table associated 
with this node in the common array. A procedure of 
mapping is presentred in [11]. It starts from the 
transition table with the largest out-degree, i.e. number 
of actual transition, then displacement for the second 
large transition table is calculated, etc., finishing with 
the smallest transition table.  

Efficiency of this method can be measured as a ratio 
of the volume of the resultant common table to the sum 
of volumes of the original transition tables. Efficiency 
of the method is proved analytically [11] for the 
particular case of the out-degree distribution, satisfying 
the condition of the so-called harmonic decay. 

According to the results of this paper,  out-degree 
distribution can be approximated by the power law   

 where γ−≅> akkxp )( 3~γ . The cumulative 
probability      can be expressed in terms 
of the probability density function :  
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where  is the number of non-empty transitions in 
all nodes with out-degree greater than  l , and  is 
the total  number of  non-empty transitions. 
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where  N  is the size of transition tables, demonstrate 
that  n(l)  has asymptotically a power law distribution 
with the exponent 2~1 −− γ   ( -1.35 for the Finnish 
in the worst case, -2.38 for French in the best case), 
which is more favorable for compression of sparse 
transition arrays than the respective condition for the 
harmonic decay in [11] (the latter can be expressed as   

1~1 −− γ ). 
Our analytical results for the out-degree distribution 

studied here suggest  that the method of storing 
transition tables in one array is efficient for dictionary’s 
implementation, especially for ideographic languages. 

6. Conclusions 

Simulations for morphology of 16 languages, 
represented by several types of deterministic finite-state 
devices, show that an important structural property of 
finite-state transition graphs – degree distribution – is 
well approximated by the power law. Traffic, measured 
for English, French and German dictionaries,  
exhibited a highly skewed power law distribution. Top 
1% of the most visited nodes covered on average about 
90% of the whole traffic.  

Traffic and out-degree are the parameters affecting  
performance of finite-state devices. Specific properties 
of power-law distribution of these parameters 
(coexistence of small number of “hubs” with large 
number of “small events”) can be exploited for efficient 
computer implementation of finite-state devices used in 
morphology. 
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