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Abstract 
Finite-state devices are widely used in natural lan-
guage processing, yet little if anything is known about 
metrics and topology of finite-state transition graphs. 
Here we study numerically the structure of directed 
state transition graphs for several types of finite-state 
devices representing morphology of 16 languages. In 
all experiments we have found that distribution of in-
coming and outcoming links is highly skewed and is 
modeled well by the power law, not by Poisson distri-
bution typical of classical random graphs. The power-
law form of degree distribution is regarded as a signa-
ture of self-organizing systems, and it has been previ-
ously found for numerous real world networks in 
communication, biology, social sciences and econom-
ics. 

1 Introduction 
Finite-state devices, including finite-state automata 
and transducers, are widely used in natural language 
processing to produce morphological information. 
Constructed as applications of formal finite-state 
techniques, they can be considered as networks where 
nodes represent states and arcs (labeled by characters) 
represent the transitions. Examination of their graph-
metrics and topology is essential for efficient com-
puter implementation of finite-state processing, in-
cluding per-node optimization. It might also lead to 
new quantitative methods in language typology as we 
argue below. 

 In computational linguistics semantic and co-
occurrence networks were already studied. In these 
networks nodes correspond to words. In semantic 
networks the links show semantic relations between 
words. In co-occurrence networks links represent the 
fact that  words occur beside each other in a corpus. 
We are not aware of similar investigations applied to 
finite-state transition networks, representing language 
morphology. In [Leslie 1995] the average out-degree 
of (random, non-deterministic) automata is shown to 
be a good predictor for the expected number of states 
in the determinized automaton, the same technique is 
used in [van Noord 2000].  

 In the Introduction we remind the basics of finite-
state processing in morphological applications and 
provide the rationale – why applying of modern ran-
dom networks theory might be of interest for applica-
tions in finite-state processing. 

 In the second section – Random Networks and Re-
lated Work – we briefly outline methods and results 
of this relatively new theory to identify which of them 
are related to the study of finite-state devices. We ar-
gue that one particular metric studied for random net-
works - degree distribution – is of special interest for 
the initial investigation. 

 In the third section we describe the morphological 
data used in our experiments, and in the fourth - our 
cross-linguistic experimental study of the degree dis-
tribution, which we have found well approximated by 
the power-law. 

 In Discussion we put forward additional considera-
tions about consequences of power-law behavior in 
view of our experiments. 

1.1 Finite-state devices used in morphology 
In our experiments we analyzed two major types of 
finite-state devices, used in natural language process-
ing for word verification and producing morphologi-
cal information. In both devices word verification is 
regarded as a process of moving from an initial input 
state to an acceptance state in a space of character 
transitions. 
Finite-state automata. The input list of words (sur-
face forms), is compiled into a letter tree, which is 
then minimized to reuse common postfixes. Each 
word can be loaded with additional information (its 
part-of-speech categories, etc.), which can be attached 
to the leaves (the terminals) of the letter tree. In this 
case two postfixes can be merged only if they lead to 
exactly the same information. Finite-state automata 
(FSAs) constructed this way, are acyclic and determi-
nistic (for each state and each character there can be 
only one or zero output links labeled by this charac-
ter). 

Lexical transducers. In our experiments we also ana-
lyzed IBM lexical transducers that implement two-
level morphology rules. Some of them have cycles 
and are non-deterministic. 
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1.2 Transition networks of finite-state devices 
All finite-state devices considered here are finite-state 
transition networks and can be viewed as the compact 
description of morphology in the form of algorithm. If 
information about conditions and/or intentional de-
scriptions of the transitions is ignored, we are left 
with a graph, which in case of deterministic devices 
exactly represents control flow of the algorithm.  
 These transition networks are easily large enough 
to be used for the investigation of power-law effects. 
They range in size from  31,219 to 429,577 nodes. 
This is similar in size to networks described in [Albert 
and Barabasi 2001]. 

1.3 Possible outcomes from the study of 
structure of finite-state transition networks 

Applications to computer implementation. Pro-
gramming structures, used to navigate through a fi-
nite-state net, have different performance and differ-
ent memory requirements. For example, deterministic 
finite-state devices are most efficiently implemented 
with transition tables that enable rapid selection of 
links between states, where these links are stored in an 
array indexed by characters from the input language. 
However, efficiency comes at the expense of consid-
erable memory overheads. Thus, the efficiency of the 
usage of transition tables depends primarily on the 
distribution of nodes according to the traffic they ex-
perience during corpora processing. Transition tables 
can be efficiently used if this distribution is a fat-
tailed distribution like power-law distribution, so that 
a small number of nodes are responsible for a signifi-
cant portion of traffic. 
 The paper Troussov et al. (2003) provided classifi-
cation of nodes according to their traffic-related role 
in an FSA and a formal procedure for assigning a for-
mat to each node based on this role. However, this 
optimization model was based on the heuristic as-
sumptions about the structure of dictionaries. Here we 
validate most of these assumptions. 
Linguistics application. Comparison of the full-form 
lexicon given as an annotated list of word forms with 
its FSA representation in case of Indo-European lan-
guages, suggests that the latter form is more suitable 
for extracting implicit morphological information. For 
example, [Daciuk 1998] provides algorithms for mor-
phological FSAs with the aim to "generalize the 
knowledge contained in the lexicon so that accurate 
prediction of morphological information for unknown 
words be possible", "little or no linguistic knowledge 
is required for that process". 

Graphmetrics and topology of transition networks 
might bear the following features, needed for devel-
oping new quantitative approaches in computational 
linguistics: 
• generic language feature, which might be used to 

characterize and detect intelligent language like 

features in an input signal (see for example [Is-
raeloff et al. 1996], [Elliott et al. 2000]); 

• language specific features, which might give way 
to new quantitative approaches for morphological 
phenomena and for language typology. 

Zipf's law is considered as an indication of lan-
guage-like behavior. Indicators, measured on finite-
state transition networks – (which result from compi-
lation of the lexis of a language into a minimized 
FSA) – probably, provide a more powerful formalism, 
because they involve not only frequencies of words, 
but also wordformation processes. 

2 Random Networks and Related 
Work 

2.1 Graph theory and random graphs 

In the theory of random graphs, the simplest and the 
most intensively studied one-vertex characteristic is 
degree. The in-degree, ki, is the number of incoming 
arcs of a vertex in an directed graph. The out-degree, 
ko, is the number of its outgoing arcs. The degree, k, is 
the number of nearest neighbors of a vertex. For di-
rected graphs the vertex degree is the total number of 
its connections  k = ki + ko  (this holds true under ad-
ditional condition that there are no arcs with both start 
and end point in this node). 

 Total distributions of vertex degrees of an entire 
network, P(ki;ko) - the joint in- and out-degree distri-
bution, P(k) - the degree distribution, Pi(ki) – the in-
degree distribution, and Po(ko) - the out-degree distri-
bution - are basic statistical characteristics of random 
networks. 

 Random graphs were first studied in the late 1950s 
by Erdös and Rényi. In general terms, a random graph 
is a graph in which properties such as the number of 
nodes, edges, and connections between them are de-
termined in a random way. In Erdös and Rényi sim-
plest classical model the graph has a fixed number of 
vertices, which are connected, at random, by edges. 
The degree in classical random graphs follows bino-
mial distribution which for large N  can be replaced 
by a Poisson distribution  P(k) = e-λ  λk ⁄ k! . 

2.2 Random massive networks 
During the last decade random networks became an 
interdisciplinary area of research with a strong influ-
ence from statistical physics. Empirical and theoreti-
cal studies were applied to numerous real world (both 
natural and man made) networks in communications, 
biology, social sciences and economics. Examples in-
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clude telephone networks, WWW, Internet, ecological 
networks (food webs), citation networks, co author-
ship networks. 
In [Dorogovtsev et al. 2002] networks as objects of 
statistical physics are classified into: 
1. equilibrium vs. nonequilibrium (for example, clas-

sical random graphs of Erdös and Rényi are equi-
librium nets, WWW or citation index – nonequi-
librium). 

2. according to the form of degree distribution (dis-
tribution function  P(k), which gives the probabil-
ity that randomly selected node has exactly k 
edges): rapidly decreasing degree distributions vs. 
fat-tailed degree distributions. 

3. uncorrelated or correlated networks. 
Standard indicators or measurements that characterize 
the structure of a graph are: 
• The statistical distribution of links (characterizing 

homogeneity and scaling properties of the graph); 

• The mean or maximum intervertex distance (i.e. 
the length of the shortest path between a pair of 
vertices), giving an idea of its size, or diameter; 

• The clustering index (a measure of independence 
of neighboring links). 

The following less frequently used characteristic is 
important for finite-state transition networks (as we 
consider them as control flow networks): 
• the traffic (the number of trajectories passing 

through each vertex or arc, and so identifying the 
most active hubs). 

The following phenomena were found in many real 
networks (see [Albert and Barabasi 2001]): 
• Small path length (known as the small-word con-

cept due to Stanley Milgram’s famous conclusion 
that, there is a path of acquaintances between 
most pairs of people in USA with typical length 
of about six); 

• Large degree of clustering; 

• Power-law tail degree distribution (scale-free con-
cept). 

2.3 Applications of random networks to com-
putational linguistics  
Methods of random networks theory were already 
successfully applied to the study of lexical-semantic 
resources like WordNet - a database of word mean-
ings with basic semantic relations between them, such 
as synonymy, hyponymy etc. See, for example, 
([Motter et al. 2002], [Sigman and Cecchi 2002] and 
[Ferrer and Solé 2001]). The major focus was on the 
small-world concept – despite the large network size, 
the distance among any pair of nodes is relatively 
small. Degree distribution was found to follow the 
power-law, and its positive correlation with word fre-
quencies was demonstrated. Studies of co-occurrence 

networks [Dorogovtsev and Mendes 2001a] also 
showed highly skewed link distributions. 
 Finite-state devices are efficient computational 
tools, and the theory of finite-state processing is algo-
rithmically oriented. We are not aware of papers 
where finite-state transitions graphs were investigated 
in the framework of modern random network theory. 
One of the reasons behind this, is that it is probably 
difficult to consider such networks as "real" ones, 
which might have crosslinguistic underlying structure 
common for different types of finite-state devices and 
governed by relatively simple laws. 
 In this paper we consider morphological finite-
state transition networks as equilibrium nets, because 
their formal construction method doesn't provide us 
with the idea how they grow up. The initial investiga-
tion is focused at the degree distribution for the fol-
lowing reasons: 
1. Although the degree of a vertex is a local quantity, 

degree distribution often determines some impor-
tant global characteristics of random networks 
(see [Dorogovtsev and Mendes 2001]). 

2. Standard definitions of intervertex distance and of 
clustering coefficient are more suitable for undi-
rected nets; while it seems that directedness is im-
portant characteristic of the computational process 
provided by finite-state transitions networks. 

3. Metric structure, determined by intervertex dis-
tances, highly relevant to the study of semantic 
relations and polysemy, seems a priori less rele-
vant to morphology compared to network dynam-
ics (described by degree distribution) and topol-
ogy. 

The paper by Albert and Barabasi (2001) states, that 
most network models studied before ignore the net-
work’s directedness and generic features of complex 
directed networks are not fully investigated. 

3 Description of Experimental Data  

3.1 Morphological data 
Finite-state transition networks of IBM morphological 
dictionaries were used for experiments. All of the dic-
tionaries provide lexical coverage sufficient for spell-
checking. They also provide fine-grained morphosyn-
tactic information. For the purpose of this paper, it is 
necessarily to describe the types of glosses in the dic-
tionaries, because this directly affects topology of the 
network through minimization stage which eliminates 
some nodes. 
 All dictionaries provide inflectional morphology. 
Derivational morphology is provided only for Fin-
nish. 
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3.2 Description of the dictionaries 
In full-form lexicons, used as the source word lists for 
FSAs construction, all case variations are explicitly 
presented. 
Germanic languages: English, German, Dutch, 
Swedish, Norwegian, Danish. Dictionaries contain 
word formation elements used for compounding (save 
for English), e.g. in German dictionary we have 
Schul- as an allomorph of the noun die Schule when 
used in initial or middle position of a compound. 
Romance languages: French, Italian, Spanish, Portu-
guese. Clitics are present in the dictionaries. 
Ideographic languages: Chinese traditional and sim-
plified. Chinese FSAs are compiled from the lists of 
words provided with glosses: part-of-speech and "fre-
quencies". The frequencies are used for statistical 
word segmentation because Chinese language has no 
orthographic word boundaries. Implementation is 
complicated by the fact that Chinese is an ideographic 
language with a repertoire of thousands of characters. 
In [Goetz and Wunsch 2001] binary search was sug-
gested for implementation of finite-state devices for 
ideographic languages. We use the polymorphic node 
structure suggested in [Troussov et al. 2003] . 
Lexical transducers. Languages: Finnish, Turkish, 
Czech, Polish, Thai. Thai dictionary contains words 
and collocations and is used for word segmentation. 
Other languages provide inflectional and derivational 
morphology based on two-level morphology rules. 

4 Experimental work 

Degree distribution 

We studied separately distribution of in-, out- and 
full-degree. In all our experiments, performed for two 
types of deterministic finite-state devices representing 
morphology of 16 languages, we have found that de-
gree distribution in all state transition graphs that 
were considered is well approximated by the power-
law. The random variable  x  is said to be distributed 
according to the power-law with the exponent  γ  if its 
probability density function satisfies P(x) ~ x -γ. 
A power-law implies that small events are common, 
whereas large events are rare. In linguistics, such dis-
tribution appears in Zipf’s law, other instances of 
power-law are Gutenberg-Richter distribution of 
earthquake magnitudes, Kolmogorov’s law in turbu-
lence, Pareto’s law in economics. [Adamic] exposes 
relations between different forms of power-law. 

 The usual way to fit power-law distribution is to 
perform a linear regression on a log-log plot of the 
cumulative distribution function. Fig. 1 and Appendix 
1 provides some samples of log-log plots for degree 
distribution, exponents are given in the Table 1. 
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Fig. 1. The log-log (base 10) plot of power-law 
approximation of the out-degree distribution for 
English with data binned into exponentially ex-
panding bins so that they will appear evenly 
spaced on a log scale (the method is discussed 
in [Adamic]). 
 
Table 1. The exponents of power-law 
approximation of the distribution of in- and 
out-degree found for our experimental data. 
Quantification was done with the data binned 
into exponentially expanding bins (the method 
is discussed in [Adamic]).  

Language 
 

Finite-state 
device 

In-Degree  
exponent 

Out-Degree 
exponent 

Chinese        
simplified 

FSA 2.47 
 

2.53 
 

Chinese  
traditional 

FSA 2.55 
 

2.56 
 

Czech FST 2.44 2.69 

Danish FSA 2.62 3.19 

Dutch FSA 2.71 3.35 

English FSA 2.52 3.18 

Finnish FST 2.37 2.35 

French FSA 2.50 3.38 

German FSA 2.67 3.32 

Italian FSA 2.43 3.14 

Norwegian FSA 2.56 3.17 

Polish FST 2.56 2.96 

Portuguese FSA 2.42 3.20 

Spanish FSA 2.45 3.20 

Swedish FSA 2.58 3.09 

Thai FST 2.82 2.95 

Traffic 
Nodes of a finite-state device experience traffic when 
the device is used to process corpora. The traffic is 
defined as a the number of visits to a node while 
processing a corpus. Fig.2 shows that the distribution 
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of traffic for English dictionary is Zipf-like distribu-
tion. 
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Fig. 2. The log-log (natural log) plot of cumula-
tive distribution function for nodes traffic in 
English dictionary.  

 

5 Discussion 

Fitness of the degree-distribution to power-
law and other approximations 

Our experiments demonstrate, that the in-degree and 
full-degree distribution of finite-state transition net-
works are well approximated by the power-law. In-
degree in all our experiments cleanly fit a power-law 
over about three decades. Empirical distribution is 
considered to exhibit a regime of power-law decay if 
log-log plot fits visually to a strait line at least for two 
decades preferably on both axes (see e.g. 
[Dorogovtsev and Mendes 2003]).  

 Deterministic finite-state transition nets, consid-
ered in this paper, have finite node’s capacity of the 
out-flowing links, because these links are uniquely la-
beled by characters from the dictionary alphabet. For 
example, English dictionary contain 96 unique char-
acters (including case variations). However, out-
degree degree distribution also demonstrate limited 
power-law regime, which is quite different from the 
Poisson distribution typical for classical random 
graphs. 

 Many of real massive networks studied recently 
show power-tail degree distribution. Some other net-
works have exponential or a coherent mixture of the 
power law and exponential degree distribution.  In our 
plots there are deviations from the power-law, i.e. 
curvature in the log-log plots, which is typical for 
many other distributions regarded as well approxi-
mated by the power law. However, search for other 

models is necessary for linguistic interpretation of pa-
rameters of the distribution (e.g. to say that there is 
the difference in degree distribution for Germanic and 
Romance languages). 

Consequences of power-law behavior 

Peaked distributions characterizing random networks 
have a strong central tendency, that is a tendency to 
cluster around some particular value. In such cases it 
may be useful to characterize the distribution by a few 
numbers that are related to its moments, including the 
mean (or by alternative estimators – median and 
mode). For example, in the height of human individu-
als the ratio between the tallest human and the aver-
age is less than 2. In systems exhibiting power law 
distribution, the mean and median are typically not 
very useful. 

 Physicists attribute the property of self-
organization (self-optimization) to networks, whose 
links follow the power-law. "Power laws are consid-
ered as one of the most striking signatures of complex 
self-organizing systems" [Laherrere and Sornette 
1998]. Preferential linking (vs. random linking) is one 
of the mechanisms that explains such self-
organization [Albert and Barabasi 2001]; in this 
model the likelihood of receiving new edges increases 
with the node’s degree. 
 We can therefore expect persistence of a self-
organized structure in the morphological finite-state 
transition networks. The structure may emerge due to: 
a)   generic algorithmic nature of finite-state process-

ing (caused by determinization and minimization 
procedures);  

b)   generic similarity in the source data used for con-
struction of finite-state transition graphs – i.e. 
properties of writing systems, morphological 
properties of languages, distribution of word 
length and the distribution of letter frequencies. 

From our results it is difficult to correlate structural 
characteristics with language typology because the 
content of the source is not homogeneous (e.g. word-
formation elements are present in the dictionaries of 
Germanic languages, but there are no wordformation 
elements for French or Spanish). Word lists compiled 
from corpora (with or without part-of-speech annota-
tion) might be more suitable for finding such correla-
tions. 

6 Conclusions and Future Work 
Experiments, made on the morphology of 16 lan-
guages, represented by several types of deterministic 
finite-state devices, show that an important structural 
property of finite-state transition graphs – degree dis-
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tribution – is well approximated by the power law. 
Such behavior is considered in statistical physics as a 
typical signature of self-organizing systems. 

 Our experiments are not sufficient to correlate 
structural properties of state transition graphs with 
language typology due to non-homogeneity of the 
source data. Finding such correlations might eventu-
ally give way to new quantitative approaches in com-
putational linguistics. Consideration of a single struc-
tural property – the degree distribution – is probably 
insufficient. 

Future works: 

• use homogeneous source data like word lists com-
piled from corpora (with or without part-of-
speech annotation) and represented by determinis-
tic minimized FSAs; 

• to correlate graph theoretical metrics with traffic; 

• to correlate structural characteristics and traffic 
with typological language characteristics (Does 
the topological complexity of the finite-state tran-
sition graph correlate with the morphological 
complexity of the represented language?) 

• describe the formation of state transition graphs in 
terms of their determinization/minimization and 
in terms of lexica growth (e.g. during first or sec-
ond language acquisition) to find similarity with 
other non-equilibrium networks for possible hy-
pothesis about how state transition graph becomes 
specifically structured. 
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Appendix 1. Samples of In- and Out-Degree Distribution 
Table 2. In- and out-degree distributions for 6 sample languages (out of 16 examined ones): 5 languages, 
whose morphology is represented by FSAs (English, Chinese as an ideographic language, Germanic lan-
guage and Romance language) and Finnish –  an agglutinative language, whose morphology is represented 
by a lexical transducer implementing two-level morphology. Shown are log-log (natural log) plots of the 
cumulative distribution function for in- and out-degree distributions, with data binned into exponentially ex-
panding bins (the method is discussed in [Adamic]). 
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Finnish. 
Agglutinative lan-
guage,  
finite-state trans-
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