
Per-Node Optimization of Finite-State Mechanisms
for Natural Language Processing

Alexander Troussov1, Brian O’Donovan1,
Seppo Koskenniemi2, and Nikolay Glushnev1

1 IBM Dublin Software Lab, Airways Ind. Est., Cloghran, Dublin 17, Ireland.
{atrousso, Brian_ODonovan, nglushnev}@ie.ibm.com

2 Oy IBM Ab. P.O.Box 265, 00101 Helsinki, Finland.
Seppo.Koskenniemi@fi.ibm.com

Abstract. Finite-state processing is typically based on structures that allow for
efficient indexing and sequential search. However, this “rigid” framework has
several disadvantages when used in natural language processing, especially for
non-alphabetical languages. The solution is to systematically introduce poly-
morphic programming techniques that are adapted to particular cases. In this
paper we describe the structure of a morphological dictionary implemented with
finite-state automata using variable or polymorphic node formats. Each node is
assigned a format from a predefined set reflecting its utility in corpora process-
ing as measured by a number of graph theoretic metrics and statistics. Experi-
mental results demonstrate that this approach permits a 52% increase in the per-
formance of dictionary look-up.

1 Introduction

Natural language dictionaries can be compactly represented as Finite State Automata
(FSAs) if word verification is seen as a process of moving from an input state to an
acceptance state in a space of letter transitions. FSAs allow common elements of
similar words to be factored out, which provides a more compact representation of
dictionaries than hash-tables, and if the organization of nodes and transitions is opti-
mized, traversal of an FSA need take no longer than hashing.

FSAs are most efficiently implemented with transition tables that enable rapid se-
lection of links between states, where these links are stored in an array indexed by
characters from the input language. However, this efficiency is purchased at the ex-
pense of considerable memory overheads. In [1] and [2] the problem was considered
purely from the perspective of compression, whereas the primary goal of our research
is directed at optimization for speed that balances the efficiency of node transition
with the effect of a node’s format on the size of the dictionary as a whole. The sim-
plicity of finite-state processing means that efficiency hinges primarily on the speed
of memory access. The classical memory organization of a computer is pyramidal,
with small amounts of fast memory dedicated to registers and a cache, and greater
amounts available to slower media such as disk. But traditional hardware and O/S

 A. Troussov et al.

approaches to optimal memory usage, such as pre-fetching, assume a regularity of
access that is not valid for the highly transitional nature of finite-state processing.

In this paper we suggest a systematic approach:

1. Ontologization of all useful node types in an FSA.
2. Classification of nodes according to their traffic-related role in an FSA.
3. A formal procedure for assigning a format to each node based on this role.

The finite state devices considered here are morphological dictionaries in which mor-
phosyntactic information is attached to final end-states (though the approach general-
izes to other FSA types). The optimization model is based both on an empirical analy-
sis and on the following heuristic assumptions about the global structure of dictionar-
ies:

1. The distribution of nodes ranked according to their out-degree is highly skewed.

Empirical analysis reveals that nodes with high out-degree are associated with
morpheme/grapheme bounds, while long filaments of nodes with only one in- and
out-flowing link generally represent proper names, idioms and non-lexical entries.

2. The distribution of nodes ranked according to their frequency of usage is Zipf-like,
with high-traffic nodes being less frequent than low-traffic nodes.

3. There is a positive correlation between a node’s traffic and its out-degree.

2 Per-Node Classification

Generally speaking, the classification of a node primarily reflects the traffic experi-
enced by that node (especially if we assume the Markov property). Our classification
is presented in the Table 1.

Each node in an FSA is assigned a format according to the classification provided
in Table 1. “Heavy-traffic” nodes clearly require explicit lookup tables indexed by
input characters, since their frequency of use mitigates the memory overheads of such
tables. More problematic are the “Medium-traffic” nodes, which are those with many
out-flowing links but which carry less traffic than “Heavy-traffic” nodes. Implementa-
tion of such nodes without the memory overhead of lookup tables is especially impor-
tant for the efficient finite-state processing of ideographic languages. Goetz et. al. [2]
has advocated that binary search be used for ideographic languages, while hash tables
might also be useful if speed is the developer’s primary concern.

For “Light-traffic” nodes with relatively few out-flowing links, a sequential list of
transitions, ordered by an empirically-determined usage frequency, typically suffices.
This ensures that the most useful transitions are accessed the quickest. Interestingly,
the results of our experiments indicate that even global character frequency alone
leads to efficient sorting of out-flowing links.

An empirical analysis reveals that a significant part of a dictionary is comprised of
filament-like “letter chains”, where the out-degree of several consecutive nodes is
one. Recognition of letter chains provides scope for optimization by allowing an FSA

Per-Node Optimization of Finite-State Mechanisms for Natural Language Processing

to transit directly from the first node of a chain to the last. This method is known in
the construction of word graphs as compaction, and the resulting directed acyclic
graph (DAG) is called Compact DAG (see also path compression in [3]). In our ap-
proach, a dedicated node format is assigned to the head node of each letter chain, and
it is the responsibility of this node/format to perform the necessary test to allow direct
transition to the end of the chain.

Table 1. One-parametric classification of FSA dictionary nodes
relative to both their out-degree and the frequency of their usage during corpora processing

One-Parametric Classification of FSA Dictionary Nodes

Classifica-
tion of
Nodes

“Start
of a Chain”:
A chain is formed
from nodes with
only one out-
flowing link (ex-
cept the last node),
which leads to
another node in the
chain. All nodes in
the chain (except
the first one) have
exactly one in-
flowing link.

“Light-
Traffic”:
Typical nodes
with more than
one, but fewer
than a dozen,
out-flowing
links.

“Medium-
Traffic”:
Nodes with a
dozen or more
of out-flowing
links. This
format is used
instead of the
format of
“Heavy nodes”
when the mem-
ory is of con-
cern.

“Heavy-
Traffic”:
Frequently visited
nodes, these
typically also
have a large
number of out-
flowing links.

Preferred
format and
technique for
selection of
apropos out-
flowing
links:

The information
about intermediate
nodes can be
stored at the start
of the chain to
provide fast access
from the first node
in the chain to the
last one.

Links are stored
as a list of out-
flowing links
and they are
sorted according
to the frequency
of their usage.

Linear search.

Links are
stored as an
array of out-
flowing transi-
tions.

Logarithmic
search,
hash tables.

Links are stored
in an array with a
size equal to the
number of char-
acters pre
in the dictionary.

sented

Direct lookup.

3 Assignment of Polymorphic Formats to Nodes
A dictionary FSA for a given language/corpus is constructed as follows:

1. The input list of words (surface forms), is compiled into a letter tree, which is then

minimized to reuse common prefixes and postfixes. Each word can be provided
with additional information (its part-of-speech categories, etc.), which can be at-
tached to the leaves (the terminals) of the letter tree; in this case two postfixes can
be merged only if they lead to exactly the same information.

2. The unoptimized dictionary FSA is used to process a large corpus. For each node
and each link in the FSA, its frequency of usage (traffic) is computed and stored.

 A. Troussov et al.

3. The statistics collected in (2) is used to classify each node. First, chain detection is
performed. Secondly, the top N most-visited nodes are classified as heavy-traffic
nodes, where N is an empirical threshold. When dealing with alphabetical lan-
guages, all other nodes can be classified as light-traffic nodes, but for ideographic
languages, a threshold on the number of out-flowing links is used to further dis-
criminate between light- and medium-traffic nodes.

4. The optimized dictionary is compiled, with dedicated node formats assigned to
each node to allow for optimal processing of the traffic through those nodes.

4 Experimental Results

Detailed experiments were done with an English dictionary. As a base case, an unop-
timized dictionary is constructed, which simply uses sequential search to select transi-
tions from each node (and where links are ordered according to the alphabetical order
of input characters). This base-case processed an average of 9.130 x 230 two-byte
characters per hour (on an Intel Pentium III with 128MB of RAM running at 500MHz
under Windows 2000). With an additional sorting of the out-flowing links in each
node based on global character frequency, an 18% performance increase was ob-
tained. However, the assignment of polymorphic node formats to each node based on
traffic, as described in this paper, yielded a 52% performance increase over the base-
case.

5 Conclusions and Future Work

The use of polymorphic node formats in FSA processing, as described in this paper,
uniformly encompasses known FSA formats while supporting new formats not previ-
ously used in the FSA literature. We have yet to test our hypotheses about the global
structural properties of dictionaries in a more general cross-linguistic manner; but our
experimental results regarding the effects of optimization do suggest some empirical
validity for these assumptions.

References
1. Kiraz, G.: Compressed storage of sparse finite-state transducers. In O. Boldt, H. Jurgensen,

and L. Robbins, editors, Workshop on Implementing Automata WIA99 - Pre-Proceedings,
Potsdam, July, 1999.

2. Goetz, T., Wunsch, H.: An Abstract Machine Approach to Finite State Transduction over
Large Character Sets. Finite State Methods in Natural Language Processing 2001. ESSLLI
Workshop, August 20-24, Helsinki.

3. Ciura, M. G., Deorowicz, S.: How to squeeze a lexicon. Software Practice and Experience,
vol. 31, n. 11, pp. 1077--1090, 2001.

