Practical Experiences using Unicode in Linguistic Databases

Practical Experiences using Unicode in Linguistic Databases

By
Dr. Brian O’Donovan

Dictionaries and Linguistic Tools team, IBM, Ireland

1.0 Introduction to IBM LanguageWare

IBM LanguageWare is a set of linguistic analysis tools that can be used for lexical analysis in more than 28 languages. The existing version of these tools code-named POE
 support a large variety of code pages including Unicode.

We have a series of linguistic databases (also known as dictionaries) that are central to the functionality of the tool. The linguistic databases for each of the languages were developed in a legacy code page appropriate for the language in question.

In recent years, the tool has been increasing used to analyse Unicode text. What this means is that the text must first be converted to the relevant legacy code page before being analysed. The results of the analysis must then be converted back to Unicode for presentation to the calling application. This can cause problems when particular characters in the input text do not have equivalent code points in the legacy code page.

The use of legacy code pages in the dictionary also makes the internal operation of the tool very complex when it is used to analyse multilingual documents. This makes the tool difficult to debug and maintain.

A typical use of the tool is to ‘spider’ web sites. Because of the increasing globalisation of the Internet, the tool is more and more often used to analyse text that contains a variety of languages. In addition, it often happens that the calling application does not know in advance what languages are contained in the analysis text.

About two years ago a decision was taken to change the internal architecture of the product from one that made use of binary search trees to one that uses Finite State Transducers (FSTs). It was decided to use the code name FROST
 for this new version of the product. While we were making such a fundamental change to the tool and the associated dictionaries, we decided to also convert the source linguistic databases to Unicode at the same time.

At the time of writing we have 6 languages implemented in the FROST architecture and we are in the middle of converting a further 6 languages. The conversion to Unicode has gone very smoothly for these languages. Even though the languages already converted use very similar alphabets, we can already see benefits from being able to deal with multiple languages using a single code page. As we begin to deal with a more diverse set of languages the decision to focus on Unicode is proving even more beneficial.

2.0 Conversion to Unicode

The IBM globalisation team is encouraging all products to start using Unicode and an increasing number of products are following that advice. By converting the linguistic databases to Unicode we eliminate the need for all code page conversions when the calling application is analysing Unicode data.

Some of the platforms that we support have different code pages for some of the languages. For example Greek is written with EBCDIC code page 875 on the OS/400 operating system, with code page 1256 on Windows and code 1280 on the Macintosh platform. This means that POE has to support a over 20 different of code pages. A large portion of our customer reported POE bugs relate either directly or indirectly to problems with code page conversions. All of our supported platforms provide varying levels of support for Unicode.

For FROST we decided to use the utf-16 encoding form. Our dictionaries need to be binary compatible across all platforms. Therefore we decided to use big-endian representation for the disk based version of our dictionaries and to convert to the endian of the platform at dictionary load time for platforms which are not big-endian based. This conversion can generally be achieved in less than one second even for dictionaries that are 10 Mbytes.

It is of course still possible to use FROST to analyse text in legacy code pages by converting it to Unicode before analysis and then converting the results back to the legacy code page. In almost all cases these conversions are less problematical than the reverse conversions required in POE because the Unicode character set includes all of the characters required in all of our supported languages. For example, if the input text was in Unicode and contained a mixture of Arabic and Greek, we could not convert it to either the Arabic Windows code page 1256 or the Greek Windows 1253 code page without loosing some of the data. But it would be possible to convert text in either of these code pages to Unicode without any data loss.

Due to the fact that we are working with Unicode text, we can utilise the International Components for Unicode (ICU)
 for tasks such as word isolation, case conversions, code page conversion etc. In fact the conversion of the linguistic databases from the legacy code pages to Unicode was easily achieved with a simple utility written on top of the ICU classes. Unfortunately overall conversion job is substantially more complex because the conversion to a format compatible with FSTs is not as straight forward as simple code page conversion.

Our linguistic databases have radically different formats for the different language regions. Some of these differences in database format are due to the nature of the languages (e.g. some of the Asian languages require statistical information to assist in the word segmentation algorithm because these languages are written without spaces between words, but this information is not needed for European languages written with spaces between words). However, many of the format differences between the linguistic databases can more truthfully be traced back to the fact that different groups working independently implemented them. One of the challenges for the team going is to determine which differences are essential and should be kept and which differences we can safely eliminate.

2.1 Unicode Benefits

Moving to Unicode linguistic databases has made life much simpler for the team. One of the benefits is that any of the database source files or test cases can be edited and viewed on any machine that supports Unicode (e.g. Windows 2000). When working on POE we had to either ensure that the machines used for editing was configured for the correct locale or else we had to use a binary editor and consult a code page table to decipher test cases and test results. This benefit is crucial now that we are beginning to work on languages which are not written with Latin based alphabets.

As mentioned before, POE had a substantial amount of code devoted to code page conversions. This code can be made even more complex by the fact that the results returned by POE are often in the form of a text buffer and a series of pointers into the text buffer; if the text buffer is converted between code pages which use a different number of bytes per character, we need to recalculate all of the pointer positions. Because FROST is entirely Unicode based, there is no need for us to replace any of these code page conversions.

As mentioned before, we tried to eliminate all unnecessary differences between the linguistic database formats for each of the languages. This makes it much easier for team members to understand how to edit the databases, because there are fewer formats to be learnt. This task was made even simpler by the use of a single code page.

2.2 Unicode Issues

In general the Unicode conversion went very smoothly, but there were a few minor issues that needed to be overcome.

2.2.1 Test case conversion

When we updated from POE to FROST it was required that the functionality would remain the same and the only significant difference that the users would see is the speed with which results are returned. Over the years, we have built up a large number of test cases for POE. Our QE team can easily verify that the update went smoothly by using the same test cases to test FROST as were used to test POE. However, we need to convert the test cases to Unicode for use with FROST and we also need to convert the results back to the legacy code page to compare them to the POE results.

The utilities we use to convert the test cases are quite simple, but they use the same ICU utilities as we use to convert the linguistic databases. In theory this means that if there were a bug in the conversion routine we would not spot this because we would make the same error in both conversions. However, our experience has been that the ICU conversion routines are very reliable and we have not yet found a single error due to this conversion.

2.2.2 Dealing with a Large Code Page

When building an FST it is frequently required to build a table with an entry for each possible character that might be encountered. A single byte code page, which has typically been used to represent European languages, requires 256 (28) entries in such a table. However, a double byte code page such as utf-16 would normally require 65,526 (216) entries in such a table. It is easy to see how this could have a dramatic effect upon the dictionary size.

We deal with this potential problem by building a transition table for each dictionary, which maps each character occurring in the dictionary into an internal number. Typically the dictionary for most European languages requires less than 100 entries in such a table because there is no need to represent punctuation and space code points within the dictionary. This means that the transition tables we build have even less entries than would normally be required for a dictionary built with a single byte code page.

2.2.3 Orthography and Character Encoding Issues

We expected that when we converted to using Unicode, we would eliminate all character representation issues. Unfortunately, this was not entirely true because there are still a significant number of cases where the word will be represented in the text being analysed in a different form than appears in the dictionary. These cases can be due either to variation in orthographic rules or due to variable character encoding.

Orthography is a set of rules for which characters should be chosen for writing words. The orthographic rules for many languages allow writers to chose from more than one set of characters to represent a given word form. The variation comes from a number of different sources:

1. Languages such as English that are spoken over a wide area have developed more than one set of accepted orthographic rules. For example, there is currently a very significant difference between the way English words are spelt in Britain and the way the same words are spelt in the United States.

People who are using our tools as a spell checker will select the spelling variation that the want and will expect us to treat any other spelling as an error.

People who use our tool for text analysis will normally want us to treat all spelling variations as equally acceptable. For example, they will want documents containing the word ‘colour’ to be treated identically to documents containing the word ‘color’.

2. Words typically appear in dictionaries in lowercase, but can appear in the analysis text in various capitalised forms. For English the capitalisation rules are relatively simple and can easily be handled by rules that are hard coded in the analysis tools. However, some other languages have capitalisation rules that are a little more complex.

For example in France, there is a convention that accented letters loose their accents when capitalised. This means that the dictionary word ‘être’ will be capitalised as ‘Etre’ when written in France. However this rule is not always followed and French speakers in Canada will write this word as ‘Être’. This means that when our tool encounters the letter ‘E’ in French text, we must look for corresponding dictionary words containing any of the letters ‘ê’, ‘é’, ‘è’ or ‘e’.

The capitalisation rules in German are even more troublesome because the written form of the word can sometimes contain a different number of characters than the dictionary form. For example the character ‘ß’ is sometimes capitalised as ‘SS’.

3. People are often forced to write languages with keyboards that do not contain keys for all of the required characters. The orthographic rules normally allow some latitude to account for this situation.

For example, English orthographic rules normally allow accented characters in loan words to be replaced by their unaccented versions. Most English speakers would recognise what I mean when I describe something as ‘passé’; they would also associate the same meaning if I described it as ‘passe’.

In German, when characters with umlauts are being typed on keyboards without the necessary keys, it is considered acceptable to replace the umlaut with an ‘e’ following the vowel which should contain the umlaut (e.g. ‘ö’ can be written as ‘oe’). Again this causes problem for analysis tools because two characters in the text must be matched against one in the dictionary.

4. Semitic languages such as Arabic and Hebrew allow words to be written with some or all of the vowels omitted. Our tools need to be able to recognise the words written with or without the vowels.

In addition, we still need to deal with some variation arising from different character in encoding choices. This is the case, even when we limit ourselves to the utf-16 encoding scheme. For example:

1. Characters are normally represented in electronic text in their precomposed form (e.g. the character ‘ë’ is normally represented by the single Unicode encoding of 0x00EB). However, it is also acceptable to represent such characters in their composed form (e.g. the character ‘ë’ is could be represented by the sequence of Unicode encodings of 0x0065 for ‘e’ followed by the encoding 0x0308 for the umlaut). Our tool needs to treat both encoding forms as equivalent.

2. In some languages such as Arabic, characters are rendered with different glyphs depending upon the context in which a word occurs. Characters may have different forms for when the character appears in isolation, at the beginning of a word, in the middle of a word or at the end of a word. In addition many vowel sounds are represented by diacritical marks on the preceding consonant rather than by independent letters.

These conventions mean that screen rendering software or printer driver software needs to be quite complex because they need to examine the context of a character before deciding how it should be drawn. The need to constantly re-evaluate character context can be quite wasteful of computing resources. For this reason, the Unicode standard defines alternative encodings called the presentation forms. For example the Arabic letter heh (ﻩ) is normally encoded as 0x0645 but it also has separate code points 0xFEE9, 0xFEEA, 0xFEEA, and 0xFEEC for the isolated, final, initial and medial forms (ﻩﻪﻫﻬ). When using the presentation forms, the correct character shape can be selected when the character is input and the context need never again be evaluated. Because these presentation forms can only be represented by a single glyph, the screen rendering or printer driver software can be significantly simpler.

Needless to say, our software needs to be able to treat words represented with the presentation forms as equivalent to words represented with the base forms. So while the presentation forms make life easier for character rendering programs, they make life more complex for linguistic analysis tools like ours.

3. When languages based upon Latin type scripts are written with a fixed font, the characters are normally rendered by glyphs with a width that is approximately half of their height. These characters are sometimes referred to as ‘half width characters’.

However, Asian languages that use a Chinese based writing system normally are written with character glyphs with a width that is approximately the same as their height. For this reason, Latin characters appearing in loan word occurring within Asian text (e.g. loan words) are often written with slightly different forms of the characters that are referred to as ‘full width characters’.

The full width characters have different Unicode encdodings because screen-drawing programs need to render them differently from their Latin equivalents. However there is no linguistic difference between these characters and the normal Latin characters so our tool needs to treat them as totally equivalent.

We deal with both orthographic and character encoding issues by explicitly representing all of the possible encoding sequences in our binary dictionaries. This allows us to accommodate the different rules used by various languages, because when we build our dictionaries we need only concern ourselves with one language at a time. If we dealt with the orthography and encoding variation within the analysis tools we would need to be able to deal with the rules for all supported languages at the same time.

Dealing with the various orthographic and representation forms by explicit representation in the dictionary would normally result in an explosion in the dictionary size. However, we have a proprietary scheme for controlling the dictionary size within acceptable limits.

3.0 Using ICU for Word Isolation

One of the advantages of our conversion to Unicode was that we were able to use the publicly available ICU toolkit for a variety of tasks.

One of the tasks that we use ICU for is for breaking the text being analyzed into its component words. It is very convenient for us to use these ready-made functions because developing a word breaking routine that is capable of dealing with all languages is a very complex task.

Unfortunately, the ICU word breaking functions do not break the text into words in the same way that we would. This is not surprising because ICU is primarily aimed at applications such as line breaking and cursor movement where performance is more important than correct word segmentation. In addition the ICU routines do not have our linguistic databases available to them and hence they use character-based rules
 to determine the location of word breaks. For this reason we treat the ICU word segmentation as an approximate first pass; during subsequent processing we may either split ICU words into two tokens or join multiple words into a single token if required. I have given some examples below for each case.

3.1 Multiword Expressions

It is common in English and many other languages to have expressions that linguistically a single unit but which are typically written with spaces.

An example of a multiword expression might be ‘Air Force’. Most English speakers would know what an ‘Air Force’ is and most would agree that it has very little to do with either ‘air’ or ‘force’. If we return this expression as two words to a document categoriser it will probably categorize this document along with documents to do with ‘pollution and air quality’ and also along with documents about ‘mechanics and force’. However, if we return it as a single token, it will get properly categorized along with other military documents.

Some multiword expressions are ambiguous. For example the word sequence ‘red tape’ could be tape that is coloured red, in which case it indicates that the document needs to be indexed under the words ‘red’ and ‘tape’. However, it could be a synonym of bureaucracy in which case it should only be indexed under ‘red tape’.

3.2 Decompounding

In German and related languages speakers or writers are permitted to combine a number of dictionary words into what appears like a single word (called a compound word). The task of breaking these compound words into their component words is called ‘decompounding’.

For example a German speaker talking about a big fat dog might refer to him either as ‘ein großer fetter Hund’ or as ‘ein Großerfetterhund’. ICU will decide that ‘Großerfetterhund’ is a single word. However, you will never find ‘Großerfetterhund’ in a dictionary, so we need to resolve this compound word into the three component words ‘großer’, ‘fetter and ‘Hund’.

The task of decompounding can be made more difficult by the fact that the component words sometimes morph slightly when they join a compound word. For example the German word for school is ‘Schule’ and the German word for teacher is ‘Lehrer’, but the German word for schoolteacher is ‘Schullehrer’. You will notice that in the compound word the trailing e is dropped from ‘Schule’ and the initial letter of ‘Lehrer’ converts to lower case despite the German convention that nouns always start with a capital letter.

In addition, two or more decompositions are sometimes possible. For example the compound word ‘Wachstube’ could be ‘Wachs Tube’ (wax tube), ‘wach Stube’ (awake room) or ‘Wache Stube’ (guard room).

3.3 Segmenting Asian Text

Many Asian languages (e.g. Chinese, Japanese and Thai) are written without any spaces between words. This makes it very difficult to determine where the word boundaries lie. In many cases the word breaks are ambiguous.

The ICU break iterator will only tell us where the unambiguous word breaks occur (e.g. if a punctuation character or a space is found in the text, this definitely represents a word break; but the lack of a space or punctuation character cannot be taken as indicating that no word break exists). When analysing text in languages with no spaces, we use the ICU break iterator to split up the text into blocks and then we use statistical techniques to guess the correct location of word breaks within these blocks.

With Chinese based writing systems each character can be a word on its own (e.g. 开pronounced ‘kai’ means open and放pronounced ‘fang’ means ‘let go’). However, a word can also be formed from number of characters (e.g. 开放pronounced ‘kaifang’ means open to the public). To help us segment text, we have collected statistics about how often each character appears as a word on its own and how often it appears with other characters as part of a longer word. For example, if we encounter the sequence开放in a text being analyzed we will decide that these two characters form a single word because the probability of this word occurring is higher than the joint probabilities of the two single words开and放occurring.

As with any statistical method, it will sometimes produce wrong results. However, segmenting Chinese text is a difficult task and even native speakers will often disagree on the correct segmentation.
4.0 Summary

We had a few issues with the task of converting our linguistic databases to Unicode. However, the work involved was much less than we had initially expected. In addition, the fact that we have a single code page for all of our dictionaries has made our architecture much simpler and hence the associated tools are easier to develop and maintain.

There is no doubt in that the decision to convert our linguistic databases to Unicode was a good decision. The investment in the conversion effort has already been justified and it will continue to save us money in the future.

� The code name POE is not an acronym. This version of the product is named after the poet Edgar Alan Poe.

� The FROST name comes from the famous writer Robert Frost. It is also a pun on the fact that the Dictionaries and Linguistic Tools team were part of the Icing software group at the time.

� See http:/icu.sanjose.ibm.com for details about ICU

� The only exception to this is Thai where ICU supports dictionary based word segmentation.

21st International Unicode Conference
8
Dublin, Ireland, May 2002

