
Methods and apparatus for encoding of explicit morphological knowledge into a
full-form lexicons compiled as finite-state automatons for usage in morphological
guessing and stemming

A program is disclosed that converts an existing Directed Acyclic Word Graph (DAWG)
morphological dictionary into a highly efficient morphological guesser without needing
access to any linguistic knowledge.

Morphosyntactical characteristics of words (such as part-of-speech,
plural/singular, ...) in economically significant Indo-European languages can be guessed
by postfix pattern. Traditional guessers use explicit linguistic knowledge. In this paper
we describe the method how to extract the knowledge from preexisting dictionaries
(annotated lists of words), and how to efficiently use finite-state device for guessing
morphosyntactic characteristics of out-of-vocabulary words while preserving the correct
morphosyntactic information about the words in the dictionary.

DAWG is efficient finite-state device. Logically it is list of words (surface forms)
provided with glosses. The basic idea is to create new DAWG dictionary from already
existing DAWG dictionary, by inverting the sequence of characters in each word so that
the ending (which is most likely to determine the word type) is examined first. This
means that the part of speech and inflection can be determined by examining a minimal
set of letters. Furthermore the algorithm which is presented will allow the size of the
dictionary to be substantially reduced by pruning multiple nodes which lead to the same
gloss and only storing nodes which represent paths for words that do not follow the
normal default rules. Our initial trials indicate that 95-97% of the nodes in an
unminimized DAWG can be eliminated by this method. Furthermore the algorithm to
eliminate unnecessary nodes runs very quickly. Small scale trials have also indicated
that it seems to make good guesses for out of vocabulary words.

This program is conceptually similar to that which is described in the paper by
Jan Daciuk entitled "Treatment of Unknown Words", which was published in the
Proceedings of the workshop on Implementing Automata WIA'99, Postdam, Germany,
1999. The main difference between this paper and the algorithm described here is:

Whereas Daciuk discusses generic Finite State Transducers (FSTs) which can 1.
have non-deterministic transitions and cycles, the algorithm described in this
paper only discusses Directed Acyclic Word Graphs (DAWGs).
His rules will miss out some annotation possibilities (see his rules 6&7), while 2.
ours will not. However, this is more a tuning factor rather than an inherent
advantage of our method.
Daciuk does not actually disclose an algorithm, he only lists the rules that the 3.
algorithm must obey.
Many search and categorization systems want to reduce the word in the text to

their root or lemma form (e.g. walk, walking and walked would all get treated the same
as walk for indexing purposes). This task is commonly referred to as lemmatization. The
existing systems to do this fall into two categories,

Dictionary based analyzers.
Rule-based analyzers such as morphological guessers, stemmers.
Dictionary based systems use a complete dictionary of the language in question

and for each word encountered in the text, they consult the dictionary to find its
corresponding root or lemma form (e.g. InXight http://www.inxight.com/products/core/).
Stemmers and morphological guessers work similarly (also morphological guessers
take into account mainly inflectional morphology and try to restore lemma, while
stemmers take into account derivational morphology also and the result they produce is
not necessary an orthographic word). Both of these devices use hand crafted rules to
convert surface words to their root form (e.g. in English we might have a rule stating that
any word ending in ing is a verb in the present perfect tense and the lemma form can be
constructed by deleting the last three letters in the word). See
http://www.tartarus.org/~martin/PorterStemmer/ for a description of the most well known
stemming algorithm for English or see http://snowball.tartarus.org/ for an effort to extend
this to more languages.

There are various advantages and disadvantages of both approaches. These are
summarized by the following table:

Dictionary Based Systems Stemmers and guessers
Advantages:

Can recognize all irregular forms
Will never over recognize

Advantages:
They are relatively easy and cheap to
implement.
They can be fast and don't need to
consume much memory.
Will recognize newly coined words so
long as they follow the standard
inflection rules of the language (e.g.
standard English rules would allow us to
guess that punged was the past tense
of the verb punge and even if we don't
know the meaning we could easily
categorise documents containing this
word along with ones containing the
word punging)

Disadvantages:
The dictionaries are expensive to
produce and maintain
Even the most complete dictionary
will not have adequate coverage for
specialized domains and so many
words will fail to be recognized
They can be slow or if tuned for
speed they will require a lot of
memory

Disadvantages:
Many words without a common ending
will not be recognized
They will sometimes over recognize
(e.g. the example rule above will
incorrectly categorize the noun ring as a
verb with lemma r)
Requires good knowledge of the
language to tune the rules so that the
best recognition rate is achieved.

What this idea describes is a way to alter a dictionary based system so that it can
get the main benefits of guessers and stemmers (i.e. small data dictionaries and ability
to process out of vocabulary words), while retaining the advantages of a dictionary
based system (e.g. increased accuracy of recognition and greater ability to deal with
irregular inflections). While in theory the system can be applied to any language, the

2

best results will be achieved for languages whose inflection rules involve adding
inflectional endings at the end of the words (this includes almost all economically
significant languages).

The principles captured by this idea are:
Reverse the entries of dictionary DAWG and correspondingly reverse the order
of letters in each look-up word. In formal terms of state-transitions space it
means that the end of the look-up word is used as the initial state, the last letter
is used for finding the first transition, etc. In most cases this will mean that we will
on average have identified the part of speech after processing fewer letters than
would be required if we were processing characters from the start of the word as
is done in conventional dictionary look-up.
Eliminate all nodes in the DAWG beyond those required for identifying inflectional
endings except in the case of irregular words. The idea of eliminating
unnecessary transitions has been tried before (e.g. the work by Daciuk) but our
idea should perform better at finding the critical points since our dictionary entries
are reversed and most languages have their inflectional marking at the end of
words. In addition we are proposing a mechanism to allow recording or defaults
and exceptions which we believe is unique.
To illustrate the algorithm, consider a simple dictionary containing only the

following words:

Word Lemma Gloss Meaning
walking walk VPP,3 A verb in the present perfect tense. It's lemma is found by

deleting the last 3 characters of the word.
talking talk VPP,3 as above
red red AJ,0 An adjective. Its lemma is the same as the surface form.
walked walk VPA,2 A verb in the past tense. It's lemma is found by deleting

 the last 2 characters of the word.
talked talk VPA,2 as above
ring ring VPR,0;

NC,0
This word has two possible interpretations. The first says that
it is a present tense verb and the second says that it is a noun.
In both cases the lemma is the same as the surface form

ringing ring VPP,3 A verb in the present perfect tense. It's lemma is found
by deleting the last 3 characters of the word.

3

The first step is to compile this into a "reversed wordforms DAWG". The resulting
DAWG is shown below:

d

e

r

k
l a t

w

g n i

rg

n
i

r

k l a

t

w

NS,0;VP,0

VPP,-3

VPP,-3

VPP,-3

VPA,-2

AJ,0;NS,0

VPA,-2

The compilation of this DAWG is in principle no different from a normal build
process. The only adaptations to our existing build program would be:

Reverse the strings before adding to DAWG
Revise the gloss creation logic to handle the subtly different gloss semantics (i.e.
the cut and paste is applied to the end of the word which is now at the start of the
DAWG)
We do not carry out the minimization step, because this would complicate the
task of eliminating redundant nodes.
This DAWG will behave exactly like our existing dictionaries with the only

difference being that text must be processed in reverse order. i.e.:
Start at the initial node (marked by a double circle in the illustration)1.
Point at the last character in the word2.
Examine the character being pointed at to see if it matches any outgoing 3.
transition in the current node (The exact procedure for matching depends upon
the way the node is being represented, but that is not relevant here.)

If a matching arc is found, make the node pointed to by the arc the current
node, move the character pointer to the preceding character and then
proceed to step 4
If no matching arc is found, then we fail to recognize the word.

Check if our pointer is before the start of the word i.e. on a space.4.
If we are not at the start of the word then to the go back to step 3
If we are at the start of the word return the gloss associated with the current
node. However, if there is no gloss associated with the current node then we
fail to recognize the word.

At this stage there is no real benefit of having the wordforms in DAWG reversed.
The benefits of the reversing only become apparent when we start eliminating
redundant nodes. However, to facilitate the eliminating of redundant nodes we need to
introduce a different gloss with a slightly different semantics. I will call these glosses
probable_glosses and I will distinguish them in the diagrams by placing them within
brackets. The meaning of these glosses is as follows:

Normal_gloss => if we reach the start of the word at this node, then take this gloss.
Probable_gloss => if we fail to match at any point after this node, then take this

4

gloss. However, if we meet a subsequent probable_gloss it will supersede this one.
Also this probable_gloss will have no effect if we terminate on a normal_gloss.

The revised rules for executing the DAWG are:
Start at the initial node (marked by a double circle in the illustration)1.
Point at the last character in the word2.
Set the probable_gloss variable to NULL.3.
If this node has any probable_gloss entry records this in our probable_gloss 4.
variable overriding any previous value.
Examine the character being pointed at to see if it matches any outgoing 5.
transition in the current node (The exact procedure for matching depends upon
the way the node is being represented, but that is not relevant here.)

If a matching arc is found, make the node pointed to by the arc the current
node, move the character pointer to the preceding character and then
proceed to step 6
If no matching arc is found, then return the value of the probable_gloss
variable as our result. If the probable_gloss variable is NULL this means that
we fail to recognize the word.

Check if our pointer is at the start of the word6.
If we are not at the start of the word then go back to step 4
If we are at the start of the word return the gloss associated with the current
node. However, if there is no gloss associated with the current node then we
return the value of the probable_gloss variable. If this variable is set to NULL,
this means we fail to recognize the word.

A visual inspection of our original DAWG shows that some of the paths can only
lead to one possible gloss, therefore we can consider them redundant and change the
DAWG to the form shown below. (A formal algorithm for collapsing these nodes will be
given later in this document).

d

e

r

k

g n i

rg

k

NS,0;VP,0

(VPP,-3),2

(VPP,-3),1

AJ,0;NS,0

(VPA,-2),2

It is clear that if any of our dictionary words are matched against this DAWG, they
will return the same gloss as in the original DAWG. However this DAWG is also similar
to a stemmer, in that it will correctly recognize non-dictionary words. For example, you
can verify that sucked and sucking will be successfully recognized as forms of suck.
However, it will only correctly recognize VPP,-3 as the correct gloss for words ending in
ging or king rather than the more general rule of handling all words ending with ing in
the conventional rule set. But it is superior to the Porter stemmer because it recognizes
some words which are exceptions to the rules (i.e. red and ring).

5

The following is the DAWG which performs equivalent to the Porter stemmer for
our limited set of words (This DAWG implements only two rules, but the latest version of
the English stemmer has a very large number of rules):

d

e

g n i (VPP,-3),2

(VPA,-2),2

We can easily produce the following DAWG which combines the Porter
stemming rules with recognition of the exception words red and ring.

d

e

r

g n i

r
g

NS,0;VP,0

(VPP,-3),2

AJ,0;NS,0

(VPA,-2),2

In real life, however the lexicon DAWG is too large to be visually examined and
manipulated in this manner. Therefore we have invented the following algorithm which
will safely remove all redundant nodes from our reversed DAWG. (Note: we might need
refinement of this algorithm if we allow loops in our DAWG).

Add the following variables to each node and initialize them. (If it is easier to 1.
implement, this could also be implemented by means of a few arrays with space
for an entry for each node).

possible_gloss (initial value = NULL)
confidence_factor (initial value = 0)
alternative_count (initial value = 0)

Set the current node to the initial node.2.
The action to take depends upon the type of the current node3.

If this node is a final node (i.e. no outgoing arcs and contains a gloss), set the 1.
confidence_factor to 1, set the possible_gloss field to the same as the gloss,
leave the alternative_count=0 and then return.
If this is a non-final node (i.e. has outgoing states) then set the current node 2.
to the nodes pointed to each of the arcs in turn and then call this function
(starting at step 3 above). When this has been done for all outgoing arcs it is
OK to proceed to step 4.

Examine the possible_gloss and confidence factor variables each of the nodes 4.
pointed to by the arcs from this node, and calculate the sum of the
confidence_factors for each of the possible_gloss values encountered.

6

Pick the possible_gloss value with the highest total confidence_factor and use it 5.
for this node.
Set the confidence_factor for this node to be the sum of the confidence factors 6.
for all of the child nodes which have the same possible_gloss value that we have
just selected above.
Set the alternative_count to the total of the alternative_counts from each of the 7.
child nodes plus the total of the confidence_factor values from all nodes which
have a different possible_gloss from the one we selected for this node.
Calculate the ratio of confidence_factor/alternative_count which is effectively the 8.
probability of our possible gloss being correct. If this falls below a threshold (e.g.
0.5) then we are in trouble??? ... this is an extension of the algorithm to stop it
being to aggressive but do we need it??
For each of the target nodes which have alternative_count = 0 and the same 9.
possible_gloss as this one can now be safely eliminated.
For each of the target nodes that have the same possible_gloss as this node, we 10.
can remove the possible_gloss from the child node because it is redundant and it
will allow space saving (Note: if we want to do minimization later this step is not
safe)
Return and handle the parent node.11.
Running this algorithm on our original DAWG transforms it to the following

DAWG

d

e

r

g n i

r (NS,0;VP,0)(VPP,-3)

(AJ,0;NS,0)

(VPA,-2)

Because of our limited vocabulary we have ended up with a very aggressive
recognizer which will treat any word ending in g other than ring as a VPP,3 gloss and
will treat any word ending in d other than red as a VPA,2 gloss. However, if you run this
algorithm on a reasonably complete dictionary it should result in a DAWG which
recognizes all dictionary words and applies rules similar to the porter stemmer for all out
of dictionary words encountered. In fact one of the benefits of this algorithm is that it can
discover the correct rules from a dictionary without the need for manual tuning to the
language by a linguistic expert. (Adapting the porter stemmer to a new language tends
to be a substantial project).

Disclosed by International Business Machines Corporation

7

